Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage--a newborn piglet study.

نویسندگان

  • M R Stankovic
  • D Maulik
  • W Rosenfeld
  • P G Stubblefield
  • A D Kofinas
  • E Gratton
  • M A Franceschini
  • S Fantini
  • D M Hueber
چکیده

OBJECTIVE Inability of continuous wave (CW) optical spectroscopy to measure changes in scattering, and the use of an arbitrary rather than an actual baseline, makes the CW method highly susceptible to errors that can lead to a false-positive or false-negative diagnosis. Our objective was to assess whether, and to what extent, the use of quantitative frequency domain spectroscopy would improve our ability to detect and monitor the development of brain hemorrhage. METHODS A dual-channel frequency-domain tissue spectrometer (Model 96208, ISS, Inc., Champaign, IL) was used to monitor the development of experimental subcortical and periventricular-intraventricular hemorrhage (IVH) in 10 newborn piglets (blood injection model). The multidistance approach was employed to calculate the absorption and reduced scattering coefficients and hemoglobin changes from the ac, dc, and phase values acquired at four different source-detector distances and at 752 nm and 830 nm. RESULTS There were significant absorption and scattering changes in the subcortical hematoma (n = 5) and the IVH groups (n = 5). The smallest detectable amount of blood in the brain was 0.04 ml. Changes associated with subcortical hematoma were several times higher than those associated with IVH, and correlated better with the estimated cross-sectional area of the hematoma than with the volume of the injected blood. As opposed to IVH, there was a significant absorption difference between the injured (subcortical hematoma) and normal side of the brain, probably because in case of IVH a significant volume of the injected blood had accumulated/spread beyond the reach of the probe. CONCLUSION Clearly, frequency-domain spectroscopy cannot increase our ability to quantify the volume (size) or the oxygenation of the injected blood, especially in the case of IVH. However, the ability to quantify the baseline tissue absorption and scattering would significantly improve diagnostic performance, and may allow for early identification and treatment of neonatal brain hemorrhage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy.

We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical prob...

متن کامل

Newborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain

This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...

متن کامل

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Real-time optical imaging of experimental brain ischemia 27 (1999) 2792286 and hemorrhage in neonatal piglets

Our objective was to study the development of experimental brain ischemia and hemorrhage by real-time optical imaging. Optical imaging is based on the ability of near infrared light to non-invasively penetrate through the intact scalp and skull and measure brain concentrations of oxyand deoxyhemoglobin, dominant brain absorbers. Optical imaging was performed in 7 anesthetized, instrumented, and...

متن کامل

Effects of decreased cerebral perfusion pressure on cerebral hemodynamics, brain cell membrane function and energy metabolism during the early phase of experimental Escherichia coli meningitis in the newborn piglet.

In this study, we tested the hypothesis that decreased cerebral perfusion pressure (CPP) induces cerebral ischemia and worsen brain damage in neonatal bacterial meningitis. Meningitis was induced by intracisternal injection of 10(9) colony forming units of Escherichia coli in 21 newborn piglets. Although CPP decreased significantly at 8 hr after bacterial inoculation, deduced hemoglobin (HbD), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of maternal-fetal medicine

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2000